首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   70篇
  2021年   5篇
  2018年   8篇
  2017年   14篇
  2016年   16篇
  2015年   14篇
  2014年   15篇
  2013年   33篇
  2012年   41篇
  2011年   31篇
  2010年   20篇
  2009年   20篇
  2008年   23篇
  2007年   22篇
  2006年   13篇
  2005年   22篇
  2004年   21篇
  2003年   23篇
  2002年   20篇
  2001年   21篇
  2000年   21篇
  1999年   17篇
  1998年   9篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1993年   12篇
  1992年   22篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   16篇
  1987年   12篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   11篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   4篇
  1972年   6篇
  1970年   10篇
  1969年   7篇
  1967年   6篇
排序方式: 共有673条查询结果,搜索用时 15 毫秒
31.
Biosynthesis of complex natural products like polyketides and nonribosomal peptides using Escherichia coli as a heterologous host provides an opportunity to access these molecules. The value in doing so stems from the fact that many compounds hold some therapeutic or other beneficial property and their original production hosts are intractable for a variety of reasons. In this work, metabolic engineering and induction variable optimization were used to increase production of the polyketide‐nonribosomal peptide compound yersiniabactin, a siderophore that has been utilized to selectively remove metals from various solid and aqueous samples. Specifically, several precursor substrate support pathways were altered through gene expression and exogenous supplementation in order to boost production of the final compound. The gene expression induction process was also analyzed to identify the temperatures and inducer concentrations resulting in highest final production levels. When combined, yersiniabactin production was extended to ~175 mg L?1. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1412–1417, 2016  相似文献   
32.
Biological data mining using kernel methods can be improved by a task-specific choice of the kernel function. Oligo kernels for genomic sequence analysis have proven to have a high discriminative power and to provide interpretable results. Oligo kernels that consider subsequences of different lengths can be combined and parameterized to increase their flexibility. For adapting these parameters efficiently, gradient-based optimization of the kernel-target alignment is proposed. The power of this new, general model selection procedure and the benefits of fitting kernels to problem classes are demonstrated by adapting oligo kernels for bacterial gene start detection  相似文献   
33.
We have produced an active form of Schistocerca gregaria ion transport peptide (ITP) in an insect cell expression system. Transformed Drosophila Kc1 cells secreted a form of ITP into the cell culture medium that was proteolytically cleaved correctly at the amino (N)-terminus. Concentrated culture supernatant from transformed Kc1 and Hi5 cells had high biological activity when tested on isolated locust ilea. Conversely, ITP expressed by baculovirus-infected Sf9 cells was larger in size and had decreased specific activity compared to ITP produced by Kc1 cells due to incorrect cleavage of the peptide at the N-terminus in the baculovirus system. This demonstrates how processing of the secreted foreign protein (ITP) expressed under the late polyhedrin promoter is compromised in a baculovirus-infected cell. Transient transformation of Kc1 cells results in supernatants containing two forms of ITP; one form (A) co-elutes with synthetic ITP and the other form (B) has reduced electrophoretic mobility. In contrast, in stably transformed Kc1 cell supernatant, ITP is expressed in a single form, which has the same electrophoretic mobility and specific biological activity as form A produced by transiently transformed Kc1 cells. Arch.  相似文献   
34.
Aflatoxin B1 (AFB1) is a mutagenic and carcinogenic mycotoxin which may play a role in the etiology of human liver cancer. In vitro studies have shown that AFB1 adducts form primarily at the N7 position of guanine. Using quantitative PCR (QPCR) and ligation-mediated PCR (LMPCR), we have mapped total AFB1 adducts in genomic DNA treated with AFB1-8,9-epoxide and in hepatocytes exposed to AFB1 activated by rat liver microsomes or human liver and enterocyte microsomal preparations. The p53 gene-specific adduct frequencies in DNA, modified in cells with 40-400 microM AFB1, were 0.07-0.74 adducts per kilobase (kb). In vitro modification with 0. 1-4 ng AFB1-8,9-epoxide per microgram DNA produced 0.03-0.58 lesions per kb. The adduct patterns obtained with the epoxide and the different microsomal systems were virtually identical indicating that adducts form with a similar sequence-specificity in vitro and in vivo. The lesions were detected exclusively at guanines with a preference towards GpG and methylated CpG sequences. The methods utilizing QPCR and LMPCR thus provide means to assess gene-specific and sequence-specific AFB1 damage. The results also prove that microsomally-mediated damage is a suitable method for avoiding manipulations with very unstable DNA-reactive metabolites and that this damage can be detected by QPCR and LMPCR.  相似文献   
35.
36.
Two distantly related classes of cylindrical chaperonin complexes assist in the folding of newly synthesized and stress-denatured proteins in an ATP-dependent manner. Group I chaperonins are thought to be restricted to the cytosol of bacteria and to mitochondria and chloroplasts, whereas the group II chaperonins are found in the archaeal and eukaryotic cytosol. Here we show that members of the archaeal genus Methanosarcina co-express both the complete group I (GroEL/GroES) and group II (thermosome/prefoldin) chaperonin systems in their cytosol. These mesophilic archaea have acquired between 20 and 35% of their genes by lateral gene transfer from bacteria. In Methanosarcina mazei G?1, both chaperonins are similarly abundant and are moderately induced under heat stress. The M. mazei GroEL/GroES proteins have the structural features of their bacterial counterparts. The thermosome contains three paralogous subunits, alpha, beta, and gamma, which assemble preferentially at a molar ratio of 2:1:1. As shown in vitro, the assembly reaction is dependent on ATP/Mg2+ or ADP/Mg2+ and the regulatory role of the beta subunit. The co-existence of both chaperonin systems in the same cellular compartment suggests the Methanosarcina species as useful model systems in studying the differential substrate specificity of the group I and II chaperonins and in elucidating how newly synthesized proteins are sorted from the ribosome to the proper chaperonin for folding.  相似文献   
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号